Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis

نویسندگان

  • Roni Nowarski
  • Ruaidhrí Jackson
  • Nicola Gagliani
  • Marcel R. de Zoete
  • Noah W. Palm
  • Will Bailis
  • Jun Siong Low
  • Christian C.D. Harman
  • Morven Graham
  • Eran Elinav
  • Richard A. Flavell
چکیده

The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of barrier integrity in a model of colitis. Deletion of Il18 or its receptor Il18r1 in intestinal epithelial cells (Δ/EC) conferred protection from colitis and mucosal damage in mice. In contrast, deletion of the IL-18 negative regulator Il18bp resulted in severe colitis associated with loss of mature goblet cells. Colitis and goblet cell loss were rescued in Il18bp(-/-);Il18r(Δ/EC) mice, demonstrating that colitis severity is controlled at the level of IL-18 signaling in intestinal epithelial cells. IL-18 inhibited goblet cell maturation by regulating the transcriptional program instructing goblet cell development. These results inform on the mechanism of goblet cell dysfunction that underlies the pathology of ulcerative colitis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-18 facilitates neutrophil transmigration via myosin light chain kinase-dependent disruption of occludin, without altering epithelial permeability.

Compromised epithelial barrier function and tight junction alterations are hallmarks of a number of gastrointestinal disorders, including inflammatory bowel disease (IBD). Increased levels of IL-18 have been observed in mucosal samples from Crohn's disease and ulcerative colitis patients. Remarkably, several reports have demonstrated that immunological or genetic blockage of IL-18 ameliorates t...

متن کامل

Mechanisms of diarrhea in the interleukin-2-deficient mouse model of colonic inflammation.

Colitis in interleukin-2-deficient (IL-2(-/-)) mice resembles ulcerative colitis in humans. We studied epithelial transport and barrier function in IL-2(-/-) mice and used this model to characterize mechanisms of diarrhea during intestinal inflammation. (22)Na(+) and (36)Cl(-) fluxes were measured in proximal colon. Net Na(+) flux was reduced from 4.0 +/- 0.5 to 0.8 +/- 0.5 micromol.h(-1).cm(-2...

متن کامل

Probiotic bacteria enhance murine and human intestinal epithelial barrier function.

BACKGROUND & AIMS The probiotic compound, VSL#3, is efficacious as maintenance therapy in pouchitis and ulcerative colitis. The aim of this study was to determine the efficacy of VSL#3 as a primary therapy in the treatment of colitis in the interleukin (IL)-10 gene-deficient mouse. Mechanisms of action of VSL#3 were investigated in T(84) monolayers. METHODS IL-10 gene-deficient and control mi...

متن کامل

DHA protects against experimental colitis in IL-10-deficient mice associated with the modulation of intestinal epithelial barrier function.

A defect in the intestinal barrier is one of the characteristics of Crohn's disease (CD). The tight junction (TJ) changes and death of epithelial cells caused by intestinal inflammation play an important role in the development of CD. DHA, a long-chain PUFA, has been shown to be helpful in treating inflammatory bowel disease in experimental models by inhibiting the NF-κB pathway. The present st...

متن کامل

Protective Role for Caspase-11 during Acute Experimental Murine Colitis

Activation of the noncanonical inflammasome, mediated by caspase-11, serves as an additional pathway for the production of the proinflammatory cytokines IL-1β and IL-18. Noncanonical inflammasome activity occurs during host defense against Gram-negative bacteria and in models of acute septic shock. We propose that the noncanonical inflammasome is activated in mice during acute intestinal inflam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2015